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Abstract— Understanding the geometric, topologic, and me-
chanical properties of cells and their interactions is critical
for studying tissue pattern formation and organ development.
Computational model and tools for simulating cell pattern
formation have broad implications in studying embryogene-
sis, blood-vessel development, tissue regeneration, and tumor
growth. Although a number of cell modeling methods exist,
they do not simultaneously account for detailed cellular shapes
as well as dynamic changes in cell geometry and topology. Here
we describe a dynamic finite element cell model (dFEMC)
for studying populations of cells and tissue development. By
incorporating details of cell shape, cell growth and shrinkage,
cell birth and death, cell division and fusion, our method can
model realistically a variety problems of cell pattern formation.
We give two examples of applying our method to the study of
cell fusion and cell apoptosis. The dFEMC model developed
here provides a general computational framework for studying
dynamics pattern formation of tissue.

I. INTRODUCTION

Cells are the building blocks of an organism, Properties
and interactions of cells largely determines the behavior
of an organism [1]. Understanding how properties of indi-
vidual cells and cell-cell interactions affect cellular pattern
formation is critical to the studies of important problems
such as embryogenesis, blood-vessel development, organ
regeneration, tumor growth, and tumor angiogenesis.

Computational modeling of cells has become increasingly
important to gain insight into understanding of cellular
pattern formation and to aid in design of further experimental
investigations. A number of computational methods have
been developed to study embryogenesis, blood-vessel de-
velopment, organ regeneration, tumor growth [2]–[14]. One
widely used method is the cellular Potts model, in which
each cell is modeled as a collection of about 25-50 lattice
sites [9], [13]. However, cell shape and topology are not
modeled explicitly and extensive postprocessing is required
if realistic cell shape is desired [15].
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Another class of methods are center-based models [8],
[14], which approximate cells as spheres. Cells can interact
with each other and respond to environmental stimuli. Cell
growth, cell division, and cell migration can all be modeled
as well. However, no details of cell shapes are described and
any shape deformation from sphere is not modeled.

Vertex models are another group of widely used mod-
els [10]–[12], [16]. They are based on the postulation that cell
shape is determined by minimizing the energy due to forces
acting on cell junctions. They can incorporate properties
of cell shape, size and elasticity to model cell birth, and
growth. However, cell shapes in vertex models are usually
not modeled in sufficient details and initial conditions are
highly restrictive.

Finite element models [4]–[7] incorporating physical and
mechanical details of cells can provide very realistic descrip-
tions of cell shapes. However, existed methods cannot be
used to study dynamic changes in population of cells.

Here we describe a novel dynamic finite element based
cell model (dFEMC) by incorporating algorithms from com-
putational geometry, including triangular mesh generation,
bounding volume construction, Delaunay triangulation, with
the goal to simulate dynamic changes in cellular patterns
with accurate description of cell shapes. Our method enables
a broad range of cellular events such as cell death and tissue
fusion to be studied computationally in details.

II. MODELS AND METHODS

A. Linear elastic model

We assume that each cell has linear elastic properties [17].
We denote one cell with certain shape in two dimensional
space as the connected points set {Ω : x

¯
= [x1, x2]T }, where

x1, x2 are world coordinates of x
¯
. The displacement of one

point x
¯

in Ω is defined as u
¯
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¯
) = [u1(x¯
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) = 1
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, where ε is the

strain vector: ε = [εx1 , εx2 , εx2x1 ]
T , where εx1 = ∂u1/∂x1,
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The stress, namely, the average internal force on unit area due
to shape deformation, can be expressed as vector σ related
to the strain vector through Hooke’s law by σ = Dε, where
D is a symmetric material stiffness matrix defined by two



lamé material constants λ and µ:

D =
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λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

∣∣∣∣∣∣
Assuming external forces f(x) are applied to the boundary
Γ of a cell Ω. We can express the strain energy and the work
done by external forces through the potential energy function
using the relation below:

ε(u
¯
) =

1
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u
¯
T BT DBu

¯
dx

¯
−
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Γ

fT u
¯
da.

B. Finite Element Discretization

For each cell, we use 20∼30 nodes to represent its bound-
ary. Triangular mesh tilling the cell is then generated using
the farthest point sampling method [18], which partitions
the cell domain into individual sub-domains of triangles
(Figure 1 a, b).

Fig. 1. Geometric discretization for cells: (a). An example of a toy model
of a tissue consisting of 3 cells. The boundary of each cell is represented
by a number of nodes. (b). For each cell, triangular mesh is generated using
the farthest point sampling method [18]. (c). Cell grows from time step t to
t+1: volume change can be attributed to individual boundary element, with
their total sum to ∆V
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where Ae is the area of Ωe and xe
i1, x

e
i2 are the world

coordinates of P e
i . We use barycentric coordinates for points

within an element. The displacement field representing strain
interrelationship between nodes of Ωe can be written in terms
of linear correlation between natural coordinates and world
coordinates :
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We can find the solution to the deformation problem under
external force by assuming the potential energy of an element

reaches its minimum, which happens when ∂ε(u
¯
) = 0. We
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We can then rewrite the equilibrium equation for element Ωe

as:
0 =

∫
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where fe is the discretized force vector for the element, and
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which leads to the equation Keue = fe, where Ke =
BeT DBeAe is the element stiffness matrix of the triangle
element. Assemble each element stiffness matrix into one
global stiffness matrix resulting in a large sparse linear
system Ku = f . The behavior of the whole system at a
specific time then can be simulated by solving this linear
equation.

C. Cell growth model

At the initial state, each cell maintains a sphere-like shape.
The intersection between two cells, if exists, is expressed as
the intersection line segment. During the cell growth process,
the shape of each cell deforms in response to external forces
exerted by adjacent cells. To model cell growth, we assume
that the growth is induced by the cell internal pressure forces.
For a cell C growing from time step t to t+1, we distribute
the cell volume change ∆V onto each cell boundary node
vi as ∆Vi (Figure 1 c). ∆Vi can be written as:

∆Vi =
1
2
|∆v

¯i × e
¯
|,

where v
¯i is the displacement vector of node vi and e

¯
is the

edge vector associated with node vi, and ”×” is vector cross
product. We then have:
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1
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|∆v
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¯
| = 1
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|,

where a
¯vi

is the acceleration rate of node vi. Using Newton’s
Law, we have:
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m
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| = 1

2
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¯
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where m is the mass of the node vi, ρ = (∆t)2/2m, and
F
¯vi

is the internal pressure forces exerted on node vi.
We can derive the internal pressure forces Fvi necessary

for the cell growth by solving the above equation for a
given ∆Vi. These pressure forces depend on cell growth
rate and the elastic properties of the cell wall, and can be
equivalently treated as the boundary conditions to trigger the
growth process which will impact on the whole tissue.



D. Detecting cell contacts

Collision or cell contacts occur when neighboring cells
grow into each other. Collision detection and correction are
critical to model the dynamics of cell growth and cell death.
At the initial state, we use Delaunay triangulation to detect
potential colliding pairs of cells. For each pair, axis-aligned
bounding boxes [19] are then used to detect the collision
nodes on both cells. As cells grow into certain shapes that
deviate from sphere or if one cell is dead and erased from the
system, we use the BD-Tree [20] to locate bounding spheres
wrapping around the cells. These bounding spheres are then
used for another round of Delaunay triangulation to detect
potential colliding cell pairs.

E. Topologic and geometric changes

There are three types of topologic and geometric changes
when cell grow or shrink. A change is required when cell
size change significantly:

• Node merging: When collision is detected between two
cells, we align the colliding nodes and merge them to
the same position by moving them onto the aligned
boundary line segment (Figure 2).

• Edge division: When one edge is longer than a prede-
fined threshold, we divide this edge by adding one new
node at the midpoint of the edge of its corresponding
cell.

• Edge removal: When one edge is shorter than a pre-
defined threshold, we remove this edge by erasing one
node from the corresponding cell.

Our model is implemented in C++.

Fig. 2. Node merging: collision detected between cells and collided nodes
are aligned and then corrected

III. RESULTS

A. Cell fusion

We now describe applications of our model. We assume
cell growth occurs in a constant environment. The first
application we study is cell fusion, which occurs when
two or more groups of cells separated spatially come into
contact and fused into one single larger tissue. Cell fusion
is important for many biological processes including cancer
metastasis [21] and wound healing [22]. The etiology of
these defects are complex and involve many processes,
including adhesion, apoptosis, and cell migration.

We use a simple example to demonstrate the geometric
and topologic changes of modeled fusion events (Figure 3
a,b). With our method, we can monitor the incremental steps
of cell growth, and track the occurrence of cell fusion events.

We then apply our method to study cancer cell growth.
Curcumin, an antitumor agent derived from the perennial

Fig. 3. Fusion of tissues and cell death: (a). Two separate tissues. (b).
Fusion of these two tissues after cell growth. (c). A picture of one tissue
where the gray cell is about to die. (d). The gray cell died and removed
from the system. (e). The adjacent cells continue to grow and occupy the
space of the dead cell.

herb, exhibits cancer preventive and therapeutic properties
by suppressing tumor growth [23]. We simulate cancer cells
growth under suppressions from curcumin. For comparison,
we also study cancer cell growth under DMSO, another
antitumor agent [24].

We setup the initial state as a set of cancer cells and
begin their growth process under different conditions of
growth rate σ = αC, where C is the colony number of
the tissue obtained from the experiments and α is constant
to adjust the growth rate to match the biological time to
simulation time. We run both simulations for 800 times
and compare the computational results with experimental
data [25]. The curcumin agent exhibited stronger suppression
effect on cancer cells than DMSO agent, which is shown in
Figure 4.

Fig. 4. Cancer cell growth under suppression induced by antitumor agents.
(a). The initial state of cell growth. (b). Tumor tissue after 800 time steps
using growth parameter modeling the effects of suppression from DMSO.
(c). Tumor tissue after 800 time steps using growth parameter modeling
the effects of suppression from curcumin. (d). The percentage of boundary
cells, namely, the number of cell on boundary of the tissue over the total
cell number, at each time step for DMSO treatment (red) and for curcumin
treatment (blue). The higher boundary cells percentage indicates a more
scattered cell population. (e). The colony number for DMSO and curcumin
treatments. We count every 9 cells as one colony. The colony number ratio
between the two treatments, 12 against 7, is consistent with the colony
number ratio between the two treatments found in experiment studies [25].

B. Cell apoptosis

We also study cell apoptosis, namely, programmed cell
death, which is essential for many important biological
processes including homeostatic tissue size control [26].
We first illustrate with a simple example. A cell is dead



and erased from the system with its space occupied by its
adjacent cells [27] (Figure 3 c, d, e).

We then apply our model to simulate wound healing.
Bisphosphonates(BPs) are known to be effective in the
treatment and prevention of osteoporosis, hypercalcemia and
other solid tumors. It is reported that BPs may inhibit normal
epithelial wound healing thus contributing to persistent ex-
posure of underlying bone and development of osteonecrosis
of the jaws [28]. Here we simulate the wound healing
process of oral epithelial cells with and without suppress
from pamidronate, a second-generation BP. For the initial
state, we have a tissue consisting of oral keratinocytes cells.
Wound is then inflicted to the tissue by erasing a subset
of 33 cells out of total 66 cells from the system. Wound
healing is modeled using different growth rates when treated
with and without pamidronate. We run simulations for 800
time steps and compare the computational results with the
experimental data [28]. The effects of pamidronate delaying
wound healing is shown in Figure 5.

Fig. 5. Wound healing under growth suppression induced by pamidronate:
(a). A wound of an oral tissue where the set of blue cells are subject
to infliction of wound. (b). The tissue suffers injury where blue cells are
erased from the system. (c). Wound healing is completed after 800 time
steps without suppression from pamindronate. (d). Wound healing after 800
time steps with suppression from pamindronate. There are gaps remaining
between tissues (e). The total number of cells within the tissue: wound
healing without suppression from pamindronate (red) and wound healing
under suppression from pamindronate (blue).

IV. CONCLUSION

Here we present a novel method called dFEMC to real-
istically model cell growth, death, division, migration, and
fusion, along with accurate description of cell shapes, which
is based on a dynamic finite element model combined with
algorithms from computational geometry based on physical
and mechanical properties of cells. Our method allows sim-
ulation of many cellular events, and results in preliminary
studies are consistent with experimental data.
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