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Abstract: We introduce a computational method which estimates non-specific binding
associated with hybridization signal intensities on the oligonucleotide-based
Affymetrix GeneChip arrays. We consider a simplified linear hybridization
model that should work well when the target DNA concentration is low or
when the probe-target affinity is weak, and use the quadratic programming
technique to estimate the parameters of this model (binding coefficients). We
show that binding coefficients correlate with the degree of homology between
the probe and target sequences. Detectable contribution into DNA binding
was found to start from the matches of 7-8 nucleotides. The method suggested
here may prove useful for the interpretation of hybridization results and for the
assessment of true target concentrations in microarray experiments.
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1. INTRODUCTION

At the present time, DNA microarray-based comparative expression
analysis has become an important tool in a variety of research areas,
including cancer research, pharmacogenomics, population studies, etc.
Many current microarray platforms utilize alternative probe formats bound
to a solid support. This method was introduced based on the observation
that single-stranded DNA binds strongly to a nitrocellulose membrane in a
way that prevents strands from re-association with each other, but permits
hybridization to complementary strands [Gillespie and Spiegelman, 1965].
Regardless of the probe format, all microarray based applications utilize a
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fundamental property of nucleic acids to re-associate separate strands in
solutions in a fashion dependant on salt concentration, strand composition
and sequence, as well as the degree of homology.

Hybridization of nucleic acid targets to tethered DNA probes in a
multiplex or heterogeneous fashion is the central event in the detection of
nucleic acids on microarrays. An immediate problem is associated with the
fact that many target single strands are present in the same reaction. If their
sequences are so predisposed, these target sequences can anneal with other
(target and probe) strands that are not fully complementary, forming
partially duplex states that are reasonably stable at assay temperatures.
Obviously such “side reactions”, or cross-hybridization, lower accuracy and
complicate the interpretation of the microarray data. The ability to estimate
the input of the cross-hybridization effect may potentially facilitate both
more accurate processing of the registered hybridization intensities and more
rational probe design as well.

In relation to spotted arrays, a few attempts have been made to approach
the cross-hybridization issue in a more specific and quantitative manner.
Riccelli et al. developed a new analytical method, which provides evidence
of the presence of both perfectly matched and heteromorphic duplex states
[Riccelli et al., 2002]. The effect of the subtle sequence composition
characteristics (one, two or tandem base pair mismatches and also the
context surrounding the mismatch) on duplex stability and cross-
hybridization propensity is under discussion. It has also been reported that
for a given nucleotide probe any “non-target” transcripts >75% similar over
the 50 base target may show cross-hybridization, thus contributing to the
overall signal intensity. In addition, if the 50 base pair target region is
marginally similar, it must not include a stretch of complementary sequence
> 15 contiguous bases [Kane et al., 2000].

To address the problem of cross-hybridization on Affymetrix
oligonucleotide microarrays, a PM/MM approach was proposed
[Affymetrix, 2002]. Each probe pair consists of a perfect match (PM) probe
and a mismatch (MM) probe that is identical to the PM oligonucleotide
except for a single base substitution in a central position. It is assumed that
PM and MM probes are equally affected by cross-hybridization, while the
PM probe has a higher level of specific hybridization. By subtracting the
MM signal from the PM signal one expects to cancel the terms related to
cross-hybridization and obtain a refined specific signal. However, the
general assumption of equal effects of cross-hybridization on PM and MM
probes is not always correct. As reported in [Naef et al., 2002] about one-
third of all probe pairs detect MM>PM. If the above assumption is true,
these probe pairs should indicate negative gene expression.



Methods of Microarray Data Analysis III 187

Additional complexity is introduced by the fact that specific
hybridization levels depend on the sequence of the probe. It was shown in
[Li and Wong, 2001] that most individual probes are less variable between
arrays than different probes within the same probe set on the same array.

This study was designed to investigate the effect of a nucleotide sequence
on hybridization and the contribution of low-homologous DNA sequences
into cross-hybridization.

2. DATA

We used the Human portion of the Affymetrix Latin Square dataset
[Affymetrix, 2001], which can be found on Affymetrix corporate website at
http://www.affymetrix.com/analysis/download or on the CAMDA website at
http://www.camda.duke.edu/camda02. This dataset contains signal
intensities for a total of 409,600 probes on Affymetrix HG-U95A microarray
chips in 59 experiments. Experiments are divided into two groups of twenty
and one group of nineteen experiments.

In each experiment fourteen labeled DNA targets with known
concentrations were spiked into labeled complex targets and hybridized to
the arrays. Two of fourteen targets (transcripts corresponding to the probe
sets 37777_at and 407_at) are at equal concentrations in each experiment;
therefore, there are only 13 distinct targets of varying concentrations in the
dataset. The composition of the complex target is not specified, however, it
was identical within each of the three groups of experiments. We introduced
three additional variables to represent these complex targets. As the actual
concentrations of complex targets had no special meaning in our study, each
of these variables was assigned the value of one in one group of experiments
and zero in the other two groups.

Oligonucleotide probe sequences and target definitions for HG-U95A
microarray chip can be found at Affymetrix corporate website. Complete
cDNA sequences for the spiked targets can be retrieved from GenBank
database (http://www.ncbi.nlm.nih.gov).

3. MODELS

DNA binding to oligonucleotide probes on a microarray is a dynamic
process [Tibanyenda et al. , 1984; Ikuta et al. , 1987; Wang et al. , 1995;
Vernier et al. , 1996; Persson et al. , 1997]. The rate of DNA molecules
associating with the spot is proportional to the concentration of DNA x and
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to the number of unoccupied oligonucleotides on the microarray
spot:

The rate of DNA dissociating is proportional to the amount of DNA
bound to the spot or to the number of occupied oligonucleotides:

Here, and are the coefficients of proportionality that can depend
on DNA structure, oligonucleotide sequence and many other factors. The
total number of oligonucleotides per spot does not
change.

When equilibrium is achieved, the rates of DNA associating and
dissociating become equal, i.e.:

where or, after making all substitutions,

Because the probe signal intensity is proportional to the amount of DNA
molecules bound to the probe, the same relation can be applied for the probe
signal intensity y :

where is the probe intensity in saturated state when all probe
oligonucleotide molecules are bound to DNA. The dependency of signal
intensity on DNA concentration is hyperbolic. However, when kx << 1 (i.e.
when the probe signal intensity is low), it can be approximated by the linear
function:
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where we define as the binding coefficient. The binding
coefficient is closely related with the probe affinity effect discussed in [Li
and Wong, 2001] and is equal to the logarithm of affinity effect defined in
[Irizarry et al., 2003].

The experimental dependency of probe signal intensity from DNA
concentration is illustrated on Figure 1.

The assumption of linearity allows us to develop a linear binding model
for simultaneous binding of many different DNA targets to many different
probes in a series of experiments:

where is the signal intensity for the i -th probe in the k -th
experiment, is molar concentration of the j -th target in the k -th
experiment, is the binding coefficient for the j -th target and the i -
th probe, and is random noise.
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For further comparison, we also used a random binding model that
assumes that the probe signal intensities are random and independent of
target molar concentrations:

where is the mean signal intensity of the i -th probe in the whole set of
experiments.

4. EXPERIMENTAL BINDING COEFFICIENTS

By dropping index i from (7), for each probe we can write:

Provided that target concentrations x and probe signal intensities y are
known for the set of experiments, binding coefficients can be found as
the solutions of the classical quadratic programming problem [Boot, 1964]:

The program for solving the problem (10) was implemented as a
combination of C++ and Matlab code. For each of 409,600 probes the
program was used to calculate 16 binding coefficients (for thirteen known
targets and three complex targets) from 59 data points.

The obtained binding coefficients were substituted in (9) to calculate the
minimized error which was compared with the minimized error

of the random binding model (8).
As seen on Figure 2, the minimized error of the linear model is smaller

than the minimized error of the random model; however, the difference is
less than one order of magnitude. This can be explained by the high level of
noise as well as by the nonlinearity of signal from many probes due to high
probe signal intensity.
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For further study, a subset of 304 probes was selected for which we
expected binding coefficients to be found with best accuracy. First, from the
complete set, there were a few-hundred probes chosen for which the
quadratic programming problem (10) solution gave the best optimization:

Next, the probes specific to, or having high similarities to the thirteen
known targets were excluded from the analysis. Because of high target
concentrations in the experiments, these probes were expected to
demonstrate nonlinear concentration-intensity dependency.

The obtained results reveal the existence of a relationship between the
binding coefficient and the degree of homology of the probe with the target
nucleotide sequences. As shown on Figure 3, the correlation between the
binding coefficient and the length of the longest common substring is over
60%. An almost identical relationship is observed when using the Smith-
Waterman [Smith and Waterman, 1981] alignment score with various
parameters instead of a common substring length.
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5. ESTIMATED BINDING COEFFICIENTS

As suggested by the above results, even a modest similarity may result in
cross-hybridization. It is natural to think that DNA binds to the probe not
only at the site of the best match, but also at the sites of weaker matches. To
model this situation, many kinds of binding patterns can be introduced as
multiple non-overlapping areas of similarity between the probe and target
sequences that together contribute to the binding coefficient:

where b is the binding coefficient between any fixed probe and target, -
number of matches of type a found between these probe and target
sequences, - contribution of each pattern of type a into the binding
coefficient and - error (not to be confused with errors in equations 8 and
9).
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Once the set of binding patterns is defined, it’s easy to calculate the
number of each pattern occurrence within the sequences of probe and target.
If the binding coefficients are known for a number of probe-target pairs, the
contribution of each binding pattern can be found by methods of quadratic
programming similar to those applied for solving problem (10).

The simplest example of binding patterns can be a set of non-overlapping
substrings of different lengths that are common in the probe and target
sequences. Since the length of all probes on the HG-U95A microarray is 25
nucleotides, there are only 25 types of binding patterns in the set. If the
binding coefficients are known for some set of probes and targets, equation
(11) can now be rewritten as:

where is the binding coefficient for the i -th probe and the j -th target,
- number of matches of length l found between these probe and target
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sequences, - contribution of each match of length l into the binding
coefficient and - random noise. The optimization problem to find the
match contribution in this case will be:

We used experimental values of binding coefficients for 304 probes,
selected above to calculate the contributions of matches of various lengths to
DNA binding. For each probe-target pair, a histogram was built for the
number of non-overlapping common substrings of one to twenty five
nucleotides in length. Following that, the optimization problem (13) was
solved with and without additional conditions (14) using Matlab code. The
problem was solved for the complete set of thirteen targets and for each
target separately, revealing very similar results. Figure 4 shows the perfect
match contributions obtained for one of the targets with and without
additional conditions (14). A slight disagreement between these two
solutions for matches longer than 10 nucleotides can be explained by the
relative rarity of long matches and high level of noise, caused by that fact.

As seen from the figure, matches of length eight or greater contribute
significantly to cross-hybridization. Though it’s not easily apparent on the
plot, contributions to cross-hybridization from matches of length seven are
also detectable.

One could expect faster growth of the match contribution function with
an increase in match length. Slow growth of this function for longer
matches is due to the fact that probes with high similarities to targets have
high signal intensities through the experiments. Because of possible non-
linearity their binding coefficients may be underestimated.

Calculated match contributions were substituted back into (12) to obtain
estimated binding coefficients that were then compared with experimental
binding coefficients obtained in the previous section. Figure 5 illustrates the
results of this comparison. The method based on the use of binding patterns
performs better than the method based on match scores. We expect that this
method can be further improved by using a more diverse set of binding
patterns rather than the set of matches of different length. This will require,
however, a larger set of experimental data.
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6. DISCUSSION

Our results demonstrate that cross-hybridization can contribute
significantly to the hybridization signal, potentially introducing substantial
error. By rough estimation, in the case of randomly uniformly distributed
nucleotides, for any DNA transcript of 500 nucleotides in length there is
about a 50% chance of a 7-nucleotide match with any 25-nucleotide probe.
This suggests that any transcript, which is present in high abundance in the
hybridization mixture, can affect the signal intensity for half of the probes on
the microarray. In seven of nineteen possible cases, a 7-nucleotite match
will cover the central nucleotide of 25-nucleotide probe. Thus, cross-
hybridization differentially affects PM signal and its corresponding MM
signal. This ratio is even worse for longer matches that are not as frequent
as 7-nucleotide matches, but produce much stronger contribution into the
signal. As reported in [Naef et al., 2002], MM>PM for about one-third of
all probe pairs. The only explanation of this fact is strong cross-
hybridization. Though most PM/MM-based algorithms [Affymetrix, 2002;
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Li and Wong, 2001] ignore such pairs, as well as other outliers, there is no
guarantee that the remaining probe pairs are free from significant cross-
hybridization.

A new successful algorithm not based on the PM/MM principle was
recently suggested in [Irizarry et al., 2003]. The model used in this
algorithm can be written as

where T represents the transformation that corrects background, normalizes
and logs the PM intensities; represents the scale expression value
found on array i; represents the log scale affinity effects for probe j;
and corresponds to relative error of j -th probe on the i -th array. There
is an obvious tight relation between the models (15) and (7). Both models
assume a linear dependency of probe signal from target concentration and
imply that probe affinity to the target may be different for different probes.
However, the possible effects of cross-hybridization are ignored in the
model (15).

The main benefit of using the linear binding model suggested here is the
opportunity to eliminate the impact of cross-hybridization. Once the binding
coefficients are determined either by experiment or theoretically, finding
target concentrations in (7) from the known probe signal intensities becomes
a trivial linear algebra problem that can be effectively solved
computationally.

The main limitation of the linear model is the fact that hybridizations
should be performed at lower target concentrations than those commonly
used in microarray experiments, which may result in higher relative noise
level. However, the linear model (15) was shown to outperform
PM/MM-based methods, probably because the concentration of spike DNA
in the datasets used was about 10 times lower than in the Affymetrix Latin
Square dataset.

To adopt an experiment with high target concentration, a non-linear
model with more than one parameter for each probe-target pair should be
applied. Its disadvantage compared to a linear model is that calculation of
target concentrations from the signal intensities can be a difficult
mathematical problem requiring substantially longer computational time.
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